
An expressive and enriched specification

language to synthesize behavior in BIG DATA

systems

Fernando Asteasuain1,2 and Luciana Rodriguez Caldeira2

1 Universidad Nacional de Avellaneda, Argentina
fasteasuain@undav.edu.ar

2 Universidad Abierta Interamericana - Centro de Altos Estudios
CAETI, Argentina

luciana.rodriguezcaldeira@alumnos.uai.edu.ar

Abstract. In this work we extend our behavioral specification and con-
troller synthesis framework FVS to deal with BIG DATA requirements.
For one side, we enriched FVS expressive power by exhibiting how our
language can handle fluents and partial specifications. For the other side,
we combined FVS with a parallel model checker in order to automati-
cally obtain a controller given the behavior specification. In this way,
FVS can be presented as an attractive tool to formally verify and syn-
thesize behavior for BIG DATA systems. Our approach is compared to
other well known parallel tool analyzing a complex big data system.

Keywords: Formal Verification, BIG DATA, Parallel Model Checkers

1 Introduction

Nowadays BIG DATA systems are surprisingly present in every day life. The
Software Engineering community has been trying to adapt, to extend or to create
tools, techniques and methods to deal with the new conditions and requirements
that these systems expose [9, 24, 15, 30, 21, 31, 25]. For example, data warehouse
approaches have emerged since traditional ways to structure data such as rela-
tional data bases are no that useful in this domain.

According to some approaches, one of the software engineering areas that
more urgently need attention and contributions is formal verification [24, 17].
The challenges to be addressed are inherent to BIG DATA systems: handling
and reasoning about tons of unstructured, informal and heterogeneous data and
information. To deal with this kind of context flexible and expressive formal-
ism are needed to express, validate and reason about the expected behavior of
the systems [25, 24, 17]. In addition, more efficient mechanisms are needed since
performance is a crucial feature to achieve when dealing with BIG DATA sys-
tems. In this sense, most of the formal verification approaches to big data try
to obtain better execution times by providing parallel version of the algorithms
involved. However, the flexibility and expressive power of the formalisms has
been somehow neglected.

357
ISBN 978 -987-633-574-4



2

One of the most applied techniques in traditional formal verification is con-
troller synthesis [18, 10]. In these approaches, a controller is automatically build
upon the expected behavior of the system and the environment it interacts. Usu-
ally, the controller takes the form of an automaton which decides which actions
to take based on the received information (mostly provided by external sensors).
The controller is built using game theory concepts, obtaining a winning strat-
egy that takes the system to an accepting state no matter which actions the
environment chooses [10]. Regarding expressive power, fluents [20] and partial
specifications are powerful formalisms to deal with unstructured behavior. A
fluent allows to model behavior that take place between intervals or moments,
introducing a new layer of abstraction in the specification. Starting and ending
actions of these intervals are defined, and then properties can be stated using
the mentioned intervals. Partial specifications introduce the possibility of speci-
fying optional behavior, a feature that is highly appreciated when dealing with
requirements in early stages since conditions and behavior itself are not clearly
determined. MTS (Modal Transition Systems) [26] is one of the most widely
known formalisms. Since controller synthesis deal with exponential algorithms,
some parallel and distributed extensions have emerged. One of them is the par-
allel version of the MTSA (Modal Transition System Analyzer) model checker
[12], which is available at: https://mtsa.dc.uba.ar/. MTSA allows to efficiently
obtain controllers in different domains [28, 29]. However, it has not been explored
in the BIG DATA domain.

In previous work we took an initial step to adapt our behavioral specifica-
tion language FVS (FeatherWeight Visual Scenarios) to deal with BIG DATA
requirements [2]. Specifically, we have parallelized the way our specification is
build, introducing a parallel algorithm to translate FVS graphical scenarios into
Büchi automata. In this work we continued this path by combining FVS spec-
ifications with the MTSA parallel model checker. In this way, we end up with
a flexible and extremely rich expressive power formalism to specify behavior and
perform controller synthesis in BIG DATA systems in a efficient way. In order
to interact with the MTSA tool we enriched FVS in two orthogonal aspects, il-
lustrating how FVS can express fluents and partial specifications, and providing
a combination to a parallel model checker. As a case of study we analyzed a big
data system provided in the literate [9] and validate our approach by comparing
execution times with another parallel technique [9].

The rest of this work is structured as follows. Section 2 briefly presents FVS
and explains how a controller can be obtained. Sections 3 and 4 show how FVS
can denote fluents and partial specifications. Section 5 exhibits the case of study
and the interaction with the MTSA model checker while Section 6 discusses the
obtained results. Finally, Sections 7 and 8 analyze some related and future work
and the conclusions of this research.

358
ISBN 978 -987-633-574-4



3

2 Feather weight Visual Scenarios

In this section we will informally describe the standing features of FVS. The
reader is referred to [1] for a formal characterization of the language. FVS is a
graphical language based on scenarios. Scenarios are partial order of events, con-
sisting of points, which are labeled with a logic formula expressing the possible
events occurring at that point, and arrows connecting them. An arrow between
two points indicates precedence. For instance, in figure 1-(a) A-event precedes
B -event. In figure 1-b the scenario captures the very next B -event following an
A-event, and not any other B -event. Events labeling an arrow are interpreted
as forbidden events between both points. In figure 1-c A-event precedes B -event
such that C-event does not occur between them. Finally, FVS features aliasing
between points. Scenario in 1-d indicates that a point labeled with A is also
labeled with A ∧ B. It is worth noticing that A-event is repeated on the labeling
of the second point just because of FVS formal syntaxis.

Fig. 1. Basic Elements in FVS

We now introduce the concept of FVS rules, a core concept in the language.
Roughly speaking, a rule is divided into two parts: a scenario playing the role
of an antecedent and at least one scenario playing the role of a consequent. The
intuition is that whenever a trace “matches” a given antecedent scenario, then
it must also match at least one of the consequents. In other words, rules take
the form of an implication: an antecedent scenario and one or more consequent
scenarios. Graphically, the antecedent is shown in black, and consequents in grey.
Since a rule can feature more than one consequent, elements which do not belong
to the antecedent scenario are numbered to identify the consequent they belong
to. An example is shown in figure 2. The rule describes requirements for a valid
writing pipe operation. For each write event, then it must be the case that either
the pipe did not reach its maximum capacity since it was ready to perform (Con-
sequent 1) or the pipe did reach its capacity, but another component performed
a read over the pipe (making the pipe available again) afterwards and the pipe
capacity did not reach again its maximum (Consequent 2).

2.1 FVS and Ghosts Events

FVS can denote high level behavior. This is due to the introduction of abstrac-
tion, which is incorporated in our notation by introducing a new type of events.

359
ISBN 978 -987-633-574-4



4

Fig. 2. An FVS rule example

By using these events the user can abstract behavior and reason about events
that are not present in the system traces, but actually represent a higher level
of abstraction. We call these special events as “ghost” events, in contrast with
“actual” events, the set of events present in the system’s specification. In or-
der to verify that a rule containing ghosts events satisfies a certain trace of the
system (which only contains actual events) there is a internal process based on
morphisms that discards ghost events based on a classic process of existential
elimination [1].

2.2 Behavioral Synthesis in FVS

FVS specifications can be used to automatically obtain a controller employing
a classical behavioral synthesis procedure. We now briefly explains how this is
achieved while the complete description is available in [3]. Using the tableau
algorithm detailed in [1] FVS scenarios are translated into Büchi automata.
Then, if the obtained automata is deterministic, then we obtain a controller using
a technique [27] based on the specification patterns [19] and the GR(1) subset of
LTL. If the automaton is non deterministic, we can obtain a controller anyway.
Employing an advanced tool for manipulating diverse kinds of automata named
GOAL [32] we translate these automata into Deterministic Rabin automata.
Since synthesis algorithms are also incorporated into the GOAL tool using Rabin
automata as input, a controller can be obtained. In this work, we add a new way
to obtain a controller, combining FVS with the MTSA model checker, as shown
in the remaining sections.

3 Fluents and FVS

Fluents [20] constitute a powerful variant of LTL. A fluent allows to model
behavior that take place between intervals or moments, introducing a new layer
of abstraction in the specification. Starting and ending actions of these intervals
are defined, and then properties can be stated using the mentioned intervals. In
[20] a simple example is given to illustrate how fluents works. Suppose we are
validating a new decentralized system for organizing television control software.
The property to verify is the following: If the TV tuner is tuning, then the screen

360
ISBN 978 -987-633-574-4



5

must be blanked, and the available events are: blank (blanks the screen), unblank
(displays the new channel signal), tune (the tuner starts tuning into the new
channel) and endtune (the tuner finishes). The tunning interval is defined as
beginning with the tune event and ending with the endtune event. Similarly,
the blanking interval starts with the blank event and finishes with the unblank
event. Once these intervals are defined then the property to be checked can be
simply formulated as � (Tunning ⇒ Blanked).

FVS can specify fluents in a very simple and direct way employing ghosts
events. Fluents starting and ending delimiters are modeled with FVS rules, flu-
ents predicates are modeled with ghost events, and intervals behavior are simply
FVS rules using those ghosts events. Rules in Figure 3 specify the TV control
system property mentioned before, using two ghosts events, namely Tunning and
Blanked. The rule in the top of the picture defines the Tunning event, where the
rule in the middle does the same for the Blanked event. Finally, the rule in the
bottom models the desired property.

Fig. 3. Fluents in FVS

4 Partial Specifications and FVS

Partial Specifications are a crucial tool to model and shape early behavior of
computer systems. They aim to capture early interactions between the elements
involved in a stage where the requirements are not yet thoroughly defined. Tran-
sitions are divided into required and maybe categories, where the latter intro-
duce partial or optional behavior. In successive versions of the system maybe
transitions are either discarded or turned into required behavior. This process

361
ISBN 978 -987-633-574-4



6

in known as refinement. Perhaps the most known formalism addressing Partial
Specifications is Modal Transitions Systems (MTS) [26].

In FVS partial specifications are inherently included since it features optional
behavior by employing multiples consequents in its rules. The semantic of the
system is given by those traces satisfying all the rules, and a rule with two or
more consequents is satisfied if at leat one of them is found, or all of them, if that
is the case. So, FVS provides the refinement operation by its traces semantics
definition. A rule with multiple consequents can be replaced in next versions with
a rule with less consequents (the optional behavior is discarded), or combining
two consequents into one (making mandatory an optional behavior).

As an example, suppose a new requirement arises in the TV control system
previously described. A new publicity system might be added to the main system.
In few words, when the screen is blanked two events could happen: either a
publicity is shown or the blanking process ends normally. At this stage, the
publicity feature is handled as an optional behavior. In FVS, this is achieved by
adding a new consequent, as shown in figure Figure 4.

Fig. 4. Describing partial behavior in FVS

5 Case Study: Dekker Algorithm

The case of study we analyzed is introduced on [9] based on the benchmarks
in [23]. This model represents a variant of Dekker’s mutual exclusion algorithm.
As described in [23], the main functioning of this algorithm is the following.
Each process has three states, p0, p1, and p3. p0 is initial. From there, the
process executes try and raises its flag, reaching p1. In p1, if at least one of the
other process has a high flag, it withdraws its intent and goes back to p0. In
p1, it enters the critical section if all other process flag is zero. From p3, the
process can only exit the critical section. The rules in Figure 5 show some of the
FVS specification fulfilling the algorithm’s requirements. The rules considered
actions for one process. The complete specification is obtained by composing
all the rules for every process involved. We employed several ghosts events like
Flag, EnterCritical and ExitCritical and rules with several consequents to handle
partial specifications.

362
ISBN 978 -987-633-574-4



7

Fig. 5. FVS rules describing the behavior of the Dekker’s algorithm

We modeled the complete behavior of the algorithm, and then we obtained
a controller using FVS rules as input in the MTSA model checker. Part of the
controller is shown in Figure 6.

Fig. 6. Part of the behavior of the Dekker’s Algorithm Controller

363
ISBN 978 -987-633-574-4



8

6 Experimental Results

In this section we describe the results we obtained aiming to measure FVS dis-
tributed model checking and controller synthesis performance regarding execu-
tion time. The system under analyses consisted of the Dekker algorithm detailed
in Section 5. We compared our execution times against the technique in [9],
which proposed this case of study. Although they verified the behavior of the
algorithm and we obtained a controller instead, the involved tasks and objectives
are similar enough to produce valuable results from their performance execution
time comparison. We ran our experiments in a Bangho Inspiron5458, with a
Dual Core i5-5200U and 8GB RAM memory.

As in [9], we conducted the experiment running the algorithm 10, 15 and 20
processes. Table 1 subsumes the obtained results, where the column Map-Reduce
CTL stands for the technique described in [9] and times is denoted in seconds. It
can be noted that although our execution times are worst the difference is not a
critical value, and it reduces as the complexity of the problem increase. Thus, it
can be preliminary observed that FVS provides great flexibility and expressive
power to synthesize behavior in complex cases without neglecting performance.

Table 1. Dekker Algorithm Execution Time

Example Map-Reduce CTL Parallel FVS

10-Dekker 50 sec 87 sec

15-Dekker 825 sec 965 sec

20-Dekker 11134 sec 11529 sec

7 Related and Future Work

There are several approaches implementing different versions of parallel model
checking algorithms for both linear and branching [22, 11, 13, 6, 7, 14] . It would
be interesting to compare the FVS-MTSA duo explored in this work with some
of the mentioned tools. Similarly, other approaches aim to speed-up the model
checking by performing parallel verification of very small units pieces of behavior
[16, 5] . For example, these units are called swarms in [16].

In [9, 15]] a interesting framework for distributed CTL (computation tree
logic) model checker is presented. They introduce a novel architecture employing
HADOOP MAPREDUCE as its computational engine. They provide a very
solid empiric evaluation with several case of studies employing Amazon Elastic
MapReduce [15] and the GRID5000 cloud infrastructure [4]. For generating and
building distributed state space exploration they rely on a framework called
Mardigras [8]. This framework introduces a general scheme to verify systems,
allowing behavior to be specified using logics, Petri Nets and other formalisms.
It would be interesting to explore if FVS can be added in this list.

364
ISBN 978 -987-633-574-4



9

Regarding future work, we would like to deepen our empirical evaluation
by introducing more case of studies and also a space comparison besides the
execution time. We believe a comparison taking into account, for example, the
number of states and transitions of the automata involved in the verifying process
can enrich the results analyzed in this work. Similarly, from the theoretical view
we would like to provide formal proofs regarding the equivalence with the fluents
and partial specification mechanisms.

8 Conclusions

In this work we present a powerful, flexible and highly expressive specification
language to denote behavior and perform controller systems in BIG DATA sys-
tems. In particular, we show how FVS is able to express behavior in terms of
fluents and partial specifications. In order to deal with BIG DATA performance
requirements we combine FVS specifications with the parallel model checker
MTSA. In this way, a controller can be found using FVS specifications as input.
We compared our executions times with other well known parallel approach ana-
lyzing a compelling case of study. By looking at the preliminary results obtained
so far we can conclude that FVS exhibits great flexibility and expressive power
without a significative loss in performance.

References

1. F. Asteasuain and V. Braberman. Declaratively building behavior by means of
scenario clauses. Requirements Engineering, 22(2):239–274, 2017.

2. F. Asteasuain and L. R. Caldeira. A parallel tableau algorithm for big data veri-
fication. In CACIC. ISBN 978-987-4417-90-9, pp 360-369, 2018.

3. F. Asteasuain, F. Calonge, and M. Dubinsky. Exploring specification pattern based
behavioral synthesis with scenario clauses. In CACIC, 2018.

4. D. Balouek, A. C. Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine,
A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, et al. Adding virtualization
capabilities to the grid5000 testbed. In CLOSER, pages 3–20. Springer, 2012.

5. J. Barnat, P. Bauch, L. Brim, and M. Češka. Employing multiple cuda devices
to accelerate ltl model checking. In 2010 IEEE 16th International Conference on
Parallel and Distributed Systems, pages 259–266. IEEE, 2010.

6. J. Barnat, L. Brim, M. Češka, and P. Ročkai. Divine: Parallel distributed model
checker. In 2010 ninth PDMC, pages 4–7. IEEE, 2010.

7. A. Bell and B. R. Haverkort. Sequential and distributed model checking of petri
nets. STTT journal, 7(1):43–60, 2005.

8. C. Bellettini, M. Camilli, L. Capra, and M. Monga. Mardigras: Simplified building
of reachability graphs on large clusters. In RP workshop, pages 83–95, 2013.

9. C. Bellettini, M. Camilli, L. Capra, and M. Monga. Distributed ctl model checking
using mapreduce: theory and practice. CCPE, 28(11):3025–3041, 2016.

10. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’Ar. Synthesis of
reactive (1) designs. 2011.

11. M. C. Boukala and L. Petrucci. Distributed model-checking and counterexample
search for ctl logic. IJSR 3, 3(1-2):44–59, 2012.

365
ISBN 978 -987-633-574-4



10

12. M. V. Brassesco. Śıntesis concurrente de controladores para juegos
definidos con objetivos de generalized reactivity(1). Tesis de Licenciatura.,
http://dc.sigedep.exactas.uba.ar/media/academic/grade/thesis/tesis 18.pdf UBA
FCEyN Dpto Computacion 2017.

13. L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting predecessors are better
than back edges in distributed ltl model-checking. In FMCAD, pages 352–366,
2004.

14. L. Brim, K. Yorav, and J. Ž́ıdková. Assumption-based distribution of ctl model
checking. STTT, 7(1):61–73, 2005.

15. M. Camilli. Formal verification problems in a big data world: towards a mighty
synergy. In ICSE, pages 638–641, 2014.

16. R. DeFrancisco, S. Cho, M. Ferdman, and S. A. Smolka. Swarm model checking
on the gpu. STTT, 22(5):583–599, 2020.

17. J. Ding, D. Zhang, and X.-H. Hu. A framework for ensuring the quality of a big
data service. In 2016 SCC, pages 82–89. IEEE, 2016.

18. N. DIppolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesising non-
anomalous event-based controllers for liveness goals. ACM Tran, 22(9), 2013.

19. M. Dwyer, M. Avrunin, and M. Corbett. Patterns in property specifications for
finite-state verification. In ICSE, pages 411–420, 1999.

20. D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems.
In European software engineering conference, pages 257–266, 2003.

21. O. Hummel, H. Eichelberger, A. Giloj, D. Werle, and K. Schmid. A collection of
software engineering challenges for big data system development. In SEAA, pages
362–369. IEEE, 2018.

22. O. Inverso and C. Trubiani. Parallel and distributed bounded model checking of
multi-threaded programs. In PPoPP, pages 202–216, 2020.

23. F. Kordon, A. Linard, M. Becutti, D. Buchs, L. Fronc, L. M. Hillah, F. Hulin-
Hubard, F. Legond-Aubry, N. Lohmann, A. Marechal, et al. Web report on the
model checking contest@ petri net 2013. 2013.

24. V. D. Kumar and P. Alencar. Software engineering for big data projects: Domains,
methodologies and gaps. In 2016 IEEE International Conference on Big Data (Big
Data), pages 2886–2895. IEEE, 2016.

25. R. Laigner, M. Kalinowski, S. Lifschitz, R. S. Monteiro, and D. de Oliveira. A sys-
tematic mapping of software engineering approaches to develop big data systems.
In SEAA, pages 446–453. IEEE, 2018.

26. K. G. Larsen and B. Thomsen. A modal process logic. LICS, pages 203210, IEEE.
27. S. Maoz and J. O. Ringert. Synthesizing a lego forklift controller in gr (1): A case

study. arXiv preprint arXiv:1602.01172, 2016.
28. L. Nahabedian, V. Braberman, N. D’Ippolito, S. Honiden, J. Kramer, K. Tei, and

S. Uchitel. Dynamic update of discrete event controllers. IEEE Transactions on
Software Engineering, 46(11):1220–1240, 2018.

29. L. Nahabedian, V. Braberman, N. Dippolito, J. Kramer, and S. Uchitel. Dynamic
reconfiguration of business processes. In International Conference on Business
Process Management, pages 35–51. Springer, 2019.

30. C. E. Otero and A. Peter. Research directions for engineering big data analytics
software. IEEE Intelligent Systems, 30(1):13–19, 2014.

31. P. A. Sri and M. Anusha. Big data-survey. Indonesian Journal of Electrical Engi-
neering and Informatics (IJEEI), 4(1):74–80, 2016.

32. Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan. Goal: A graphical
tool for manipulating büchi automata and temporal formulae. In TACAS, pages
466–471. Springer, 2007.

366
ISBN 978 -987-633-574-4


	An expressive and enriched

